Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
उत्तर
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x) (7^x + x^7 - 2/3 xsqrt(x) - log x + 7^7)`
∴ `("d"y)/("d"x) = "d"/("d"x) (7^x) + "d"/("d"x) (x^7) - 2/3 "d"/("d"x) (x^(3/2)) - "d"/("d"x) (logx) + "d"/("d"x) 7^7`
= `7^x log 7 + 7x^6 - 2/3 xx 3/2 x^(3/2 - 1) - 1/x + 0`
= `7^x log 7 + 7x^6 - x^(1/2) - 1/x`
= `7^x log 7 + 7x^6 - sqrt(x) - 1/x`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Find the derivative of the following function by the first principle: `x sqrtx`
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `x/log x`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
Differentiate the following function w.r.t.x. : x−2
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = ((logx+1))/x`
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `log x - "cosec" x + 5^x - 3/(x^(3/2))`
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`