Advertisements
Advertisements
प्रश्न
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
उत्तर
Total cost function,
C = 1500 − 75n + 2n2 + `"n"^3/5`
Marginal Cost = `("dC")/("dn")`
=`"d"/("dn")(1500 - 75"n" + 2"n"^2 + "n"^3/5)`
=`d/(dn)(1500) - 75"d"/("dn")("n")+2"d"/("dn")("n"^2) + 1/5"d"/("dn")("n"^3)`
= `0 - 75(1) + 2(2"n")+1/5(3"n"^2)`
= `-75 + 4"n" + (3"n"^2)/5`
When n = 10,
Marginal cost
=`(("dC")/("dn"))_("n" = 10)`
= `-75 + 4(10) + 3/5 (10)^2`
= –75 + 40 + 60
= 25
∴ Marginal cost at n = 10 is 25.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `x/log x`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
Differentiate the following function w.r.t.x. : x−2
Differentiate the following function w.r.t.x. : `xsqrt x`
Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx`if y = x log x (x2 + 1)
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
Differentiate the following w.r.t.x :
y = `log x - "cosec" x + 5^x - 3/(x^(3/2))`