Advertisements
Advertisements
प्रश्न
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
उत्तर
Let y = `(3x^2 - 5)/(2x^3 - 4)`
using `dy/dx = (v(du)/dx - u(dv)/dx)/v^2`
let `(3x^2 - 5) = u and (2x^3 - 4) = v`
Differentiating w.r.t. x, we get
`dy/dx=d/dx((3x^2 - 5)/(2x^3 - 4))`
= `((2x^3 - 4)d/dx(3x^2 - 5) - (3x^2 - 5)d/dx(2x^3 - 4))/(2x^3 - 4)^2`
= `((2x^3 - 4)(3d/dxx^2 - d/dx5) - (3x^2 - 5)(2d/dxx^3 - d/dx4))/(2x^3 - 4)^2`
= `((2x^3 - 4)[3(2x - 0)] - (3x^2 - 5)[2(3x^2 - 0)])/(2x^3 - 4)^2`
= `((2x^3 - 4)[3(2x)] - (3x^2 - 5)[6x^2])/(2x^3 - 4)^2`
= `((2x^3 - 4)(6x) - (3x^2 - 5)(6x^2))/(2x^3 - 4)^2`
= `(6x(2x^3 - 4) - 6x^2(3x^2 - 5))/(2x^3 - 4)^2`
= `(12x^4 - 24x - 18x^4 + 30x^2)/(2x^3 - 4)^2`
= `(-6x^4 + 30x^2 - 24x)/(2x^3 - 4)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Find the derivative of the following function by the first principle: 3x2 + 4
Find the derivative of the following function by the first principle: `x sqrtx`
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = "e"^x/logx`
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`