Advertisements
Advertisements
प्रश्न
Find `dy/dx` if y = x2 + 2x – 1
उत्तर
y = x2 + 2x – 1
Differentiating w.r.t. x, we get
`dy/dx=d/dx(x^2+2^x-1)`
=`d/dx(x^2)+d/dx(2^x)-d/dx(1)`
= 2x + 2x log 2 – 0
= 2x + 2x log 2
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following function by the first principle: 3x2 + 4
Find the derivative of the following function by the first principle: `x sqrtx`
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Differentiate the following function w.r.t.x. : `xsqrt x`
Find `dy/dx if y = ((logx+1))/x`
Find `dy/dx if y = "e"^x/logx`
Find `dy/dx`if y = x log x (x2 + 1)
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`