Advertisements
Advertisements
प्रश्न
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
उत्तर
Total cost function, C = 5x3 + 2x2 + 7
Average cost = `"C"/x`
=`(5x^3 + 2x^2 + 7)/x`
= 5x2 + 2x + `7/x`
When x = 4,
Average cost = 5(4)2 + 2(4) + `7/4`
= 80 + 8 + `7/4`
= `(320 + 32+ 7)/4`
= `359/4`
Marginal cost = `("dC")/("d"x)`
=`"d"/("d"x)(5x^3 + 2x^2 + 7)`
= `5"d"/("d"x) (x^3) + 2"d"/("d"x)(x^2) + "d"/("d"x)(7)`
= 5(3x2) + 2(2x) + 0
= 15x2 + 4x
When x = 4, Marginal cost = `(("dC")/"dx")_ (x = 4)`
= 15(4)2 + 4(4)
= 240 + 16
= 256
∴ the average cost and marginal cost at x = 4 are `359/4` and 256 respectively.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following function by the first principle: `x sqrtx`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx if y = "e"^x/logx`
Find `dy/dx`if y = x log x (x2 + 1)
If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =