Advertisements
Advertisements
प्रश्न
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
उत्तर
Let y = `(x^2 + 1)/x`
Differentiating w.r.t. x, we get
`dy/dx= d/dx((x^2 + 1)/x)`
= `(xd/dx(x^2 + 1) - (x^2 + 1)d/dx(x))/x^2`
= `(x(2x + 0) - (x^2 + 1)(1))/x^2`
= `(2x^2 - x^2 - 1)/x^2`
`dy/dx=(x^2 - 1)/x^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
Differentiate the following function .w.r.t.x. : x5
Differentiate the following function w.r.t.x. : x−2
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx`if y = x log x (x2 + 1)
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`