Advertisements
Advertisements
Question
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Solution
Let y = `(x^2 + 1)/x`
Differentiating w.r.t. x, we get
`dy/dx= d/dx((x^2 + 1)/x)`
= `(xd/dx(x^2 + 1) - (x^2 + 1)d/dx(x))/x^2`
= `(x(2x + 0) - (x^2 + 1)(1))/x^2`
= `(2x^2 - x^2 - 1)/x^2`
`dy/dx=(x^2 - 1)/x^2`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Find the derivative of the following function by the first principle: `x sqrtx`
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
Differentiate the following function w.r.t.x. : x−2
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = "e"^x/logx`
Find `dy/dx`if y = x log x (x2 + 1)
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`