English

Find dydxif y = x log x (x2 + 1) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `dy/dx`if y = x log x (x2 + 1)

Sum

Solution

y = x log x (x2 + 1)
Differentiating w.r.t. x, we get

`dy/dx = d/dx(x)(logx)(x^2 + 1)`

= `(x)(logx)d/dx(x^2 + 1) - (x^2 + 1)d/dx((x)(logx))`

= `(xlogx)(2x + 0) + (x^2 + 1)[xd/dx(logx) + (logx)d/dx(x)]`

=`2x^2logx + (x^2 + 1)[x xx 1/x + (logx)(1)]`

= 2x2 log x + (x2 + 1) (1 + log x)
= 2x2 log x + (x2 + 1) + (x2 + 1) log x

shaalaa.com
Rules of Differentiation (Without Proof)
  Is there an error in this question or solution?
Chapter 9: Differentiation - Miscellaneous Exercise 9 [Page 123]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
Chapter 9 Differentiation
Miscellaneous Exercise 9 | Q II. (10) | Page 123

RELATED QUESTIONS

Differentiate the following function w.r.t.x : `(x^2 + 1)/x`


Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`


Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`


Differentiate the following function w.r.t.x. : `x/log x`


Differentiate the following function w.r.t.x. : `2^x/logx`


The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.


Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.


Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.


Differentiate the following function .w.r.t.x. : x5


Differentiate the following function w.r.t.x. : `xsqrt x`


Find `dy/dx if y = x^2 + 1/x^2`


Find `dy/dx if y = "e"^x/logx`


The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.


The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.


The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.


Differentiate the following w.r.t.x :

y = `log x - "cosec"  x + 5^x - 3/(x^(3/2))`


Differentiate the following w.r.t.x :

y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×