हिंदी

Find dydxif y = x log x (x2 + 1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `dy/dx`if y = x log x (x2 + 1)

योग

उत्तर

y = x log x (x2 + 1)
Differentiating w.r.t. x, we get

`dy/dx = d/dx(x)(logx)(x^2 + 1)`

= `(x)(logx)d/dx(x^2 + 1) - (x^2 + 1)d/dx((x)(logx))`

= `(xlogx)(2x + 0) + (x^2 + 1)[xd/dx(logx) + (logx)d/dx(x)]`

=`2x^2logx + (x^2 + 1)[x xx 1/x + (logx)(1)]`

= 2x2 log x + (x2 + 1) (1 + log x)
= 2x2 log x + (x2 + 1) + (x2 + 1) log x

shaalaa.com
Rules of Differentiation (Without Proof)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differentiation - Miscellaneous Exercise 9 [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 9 Differentiation
Miscellaneous Exercise 9 | Q II. (10) | पृष्ठ १२३

संबंधित प्रश्न

Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`


Find the derivative of the following functions by the first principle: `1/(2x + 3)`


Differentiate the following function w.r.t.x : `(x^2 + 1)/x`


Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`


Differentiate the following function w.r.t.x. : `2^x/logx`


Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`


The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.


Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.


Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.


Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.


The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.


The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.


Differentiate the following function .w.r.t.x. : x5


Differentiate the following function w.r.t.x. : x−2


Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`


Find `dy/dx if y = x^2 + 1/x^2`


Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`


Find `dy/dx if y = "e"^x/logx`


Differentiate the following w.r.t.x :

y = `x^(4/3) + "e"^x - sinx`


Differentiate the following w.r.t.x :

y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×