Advertisements
Advertisements
प्रश्न
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
उत्तर
Let y = `(x"e"^x)/(x + "e"^x)`
Differentiating w.r.t. x, we get
`dy/dx = d/dx((x"e"^x)/(x + "e"^x))`
= `((x + "e"^x)d/dx(x"e"^x) -(x"e"^x)d/dx(x + "e"^x))/(x + "e"^x)^2`
=`((x + "e"^x)[xd/dx("e"^x) + "e"^xd/dx(x)] - x"e"^x(d/dx(x) + d/dx("e"^x)))/(x + "e"^x)^2`
= `((x + "e"^x)[x"e"^x + "e"^x(1)] - x"e"^x(1 + "e"^x))/(x + "e"^x)^2`
=`((x + "e"^x)(x"e"^x + "e"^x) - x"e"^x(1 + "e"^x))/(x + "e"^x)^2`
= `((x + "e"^x)"e"^x(x + 1) - x"e"^x(1 + "e"^x))/(x + "e"^x)^2`
= `("e"^x[(x + "e"^x)(x + 1) - x(1 + "e"^x)])/(x + "e"^x)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx` if y = (1 – x) (2 – x)
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = "e"^x/logx`
Find `dy/dx`if y = x log x (x2 + 1)
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.