Advertisements
Advertisements
प्रश्न
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
उत्तर
Let y = `(3"e"^x - 2)/(3"e"^x + 2)`
Differentiating w.r.t. x, we get
`dy/dx = d/dx((3"e"^x - 2)/(3"e"^x + 2))`
=`((3"e"^x + 2) d/dx(3"e"^x - 2) - (3"e"^x - 2) d/dx(3"e"^x + 2))/((3"e"^x + 2)^2)`
= `((3"e"^x + 2)(d/dx(3"e"^x) - d/dx(2)) - (3"e"^x - 2)(d/dx(3"e"^x) + d/dx(2)))/((3"e"^x + 2)^2)`
= `((3"e"^x + 2)(3"e"^x - 0) - (3"e"^x - 2)(3"e"^x + 0))/((3"e"^x + 2)^2)`
= `(3"e"^x(3"e"^x + 2) - 3"e"^x(3"e"^x - 2))/((3"e"^x + 2)^2)`
= `(3"e"^x(3"e"^x + 2 - 3"e"^x + 2))/(3"e"^x + 2)^2`
= `(3"e"^x(4))/(3"e"^x + 2)^2`
= `(12"e"^x)/(3"e"^x + 2)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Find the derivative of the following function by the first principle: 3x2 + 4
Find the derivative of the following function by the first principle: `x sqrtx`
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx` if y = (1 – x) (2 – x)
Find `dy/dx if y = ((logx+1))/x`
Find `dy/dx if y = "e"^x/logx`
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`