Advertisements
Advertisements
Question
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solution
Total cost function,
C = 1500 − 75n + 2n2 + `"n"^3/5`
Marginal Cost = `("dC")/("dn")`
=`"d"/("dn")(1500 - 75"n" + 2"n"^2 + "n"^3/5)`
=`d/(dn)(1500) - 75"d"/("dn")("n")+2"d"/("dn")("n"^2) + 1/5"d"/("dn")("n"^3)`
= `0 - 75(1) + 2(2"n")+1/5(3"n"^2)`
= `-75 + 4"n" + (3"n"^2)/5`
When n = 10,
Marginal cost
=`(("dC")/("dn"))_("n" = 10)`
= `-75 + 4(10) + 3/5 (10)^2`
= –75 + 40 + 60
= 25
∴ Marginal cost at n = 10 is 25.
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following function by the first principle: 3x2 + 4
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
Differentiate the following function .w.r.t.x. : x5
Differentiate the following function w.r.t.x. : x−2
Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx` if y = (1 – x) (2 – x)
Find `dy/dx if y=(1+x)/(2+x)`
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `sqrt(x) + tan x - x^3`
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`