Advertisements
Advertisements
प्रश्न
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
उत्तर
Let y = `((x + 1)(x - 1))/(("e"^x + 1))`
∴ y = `(x^2 - 1)/(("e"^x + 1))`
Differentiating w.r.t. x, we get
`dy/dx=d/dx((x^2 - 1)/("e"^x + 1))`
= `(("e"^x + 1)d/dx(x^2 - 1) - (x^2 - 1)d/dx("e"^x + 1))/("e"^x + 1)^2`
= `(("e"^x + 1)(2x) - (x^2 - 1)("e"^x + 0))/("e"^x + 1)^2`
= `(2x"e"^x + 2x - x^2"e"^x + "e"^x)/("e"^x + 1)^2`
= `(2x"e"^x + "e"^x - x^2"e"^x + 2x)/("e"^x + 1)^2`
= `("e"^x(2x + 1 - x^2) + 2x)/("e"^x + 1)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
Differentiate the following function .w.r.t.x. : x5
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx` if y = (1 – x) (2 – x)
Find `dy/dx if y = ((logx+1))/x`
Find `dy/dx if y = "e"^x/logx`
Find `dy/dx`if y = x log x (x2 + 1)
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =