Advertisements
Advertisements
प्रश्न
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
उत्तर
Demand function, D =`sqrt(75 − 3"P")`
Now, Marginal demand = `("dD")/("dP")`
= `"d"/("dP")(sqrt(75 − 3"P"))`
=`1/(2 sqrt(75- 3"P")) *"d"/("dP") (75 - 3"P")`
=`1/(2 sqrt(75- 3"P"))*(0 - 3 xx1)`
=`(-3)/(2 sqrt(75 - 3"P"))`
When P = 5,
Marginal demand = `(("dD")/("dP")) _("P" = 5)`
=`(-3)/(2 sqrt(75 - 3(5)))`
= `(-3)/(2sqrt60)`
= `(-3)/(4sqrt15)`
∴ Marginal demand =`(-3)/(4sqrt15)` at P = 5.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Find the derivative of the following function by the first principle: `x sqrtx`
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx if y = ((logx+1))/x`
Find `dy/dx if y = "e"^x/logx`
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`