Advertisements
Advertisements
प्रश्न
Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.
उत्तर
Total cost of ‘t’ toy cars, C = 5(2t) + 17
Marginal Cost =`("dC")/"dt"`
= `d/dt [5(2^t) + 17]`
=`5"d"/"dt"(2^"t")+"d"/"dt"(17)`
= 5(2t . log 2) + 0
= 5(2t . log 2)
When t = 3,
Marginal cost =` (("dC")/("dt"))_("t" = 3)`
= 5(23. log 2)
= 40 log 2
Average cost =`"C"/"t"= (5(2)^"t"+17)/t`
When t = 3, averagecos = `(5(2^3) + 17)/3`
= `(40+ 17)/3` = 19
∴ at t = 3, Marginal cost is 40 log 2 and Average cost is 19.
APPEARS IN
संबंधित प्रश्न
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
Differentiate the following function w.r.t.x. : `xsqrt x`
Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx` if y = (1 – x) (2 – x)
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = ((logx+1))/x`
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.
Differentiate the following w.r.t.x :
y = `sqrt(x) + tan x - x^3`
Differentiate the following w.r.t.x :
y = `log x - "cosec" x + 5^x - 3/(x^(3/2))`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`