Advertisements
Advertisements
प्रश्न
Differentiate the following function w.r.t.x. : `xsqrt x`
उत्तर
Let y = `xsqrt x`
∴ `y = x^(3/2)`
Differentiating w.r.t. x, we get
`dy/dx=d/dxx^(3/2)`
= `3/2x^(1/2)`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `x/log x`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx` if y = (1 – x) (2 – x)
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx`if y = x log x (x2 + 1)
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`