मराठी

Find the derivative of the following function by the first principle: 3x2 + 4 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function by the first principle: 3x2 + 4

बेरीज

उत्तर

Let f(x) = 3x2 + 4
∴ f(x + h) = 3(x + h)2 + 4
= 3(x2 + 2xh + h2) + 4
= 3x2 + 6xh + 3h2 + 4
By first principle, we get

f ′(x) =`lim_("h"→ 0) ("f"(x + "h") - "f"(x))/"h"`

=`lim_("h" → 0) ((3x^2 + 6x"h" + 3"h"^2 + 4) - (3x^2 + 4))/"h"`

=`lim_("h" → 0) (3"h"^2 + 6x"h")/"h"`

=`lim_("h"→0) (h(3h+6x))/h`

=`lim_("h" → 0)(6x + 3"h")`   …[∵ h → 0, ∴h ≠ 0]

= 6x + 3(0)
= 6x

shaalaa.com
Rules of Differentiation (Without Proof)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differentiation - Exercise 9.1 [पृष्ठ १२०]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
पाठ 9 Differentiation
Exercise 9.1 | Q V. (1) | पृष्ठ १२०

संबंधित प्रश्‍न

Find the derivative of the following w. r. t.x.

`(3x^2 - 5)/(2x^3 - 4)`


Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`


Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`


Find the derivative of the following function by the first principle: `x sqrtx`


Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`


Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`


The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.


Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.


Differentiate the following function .w.r.t.x. : x5


Differentiate the following function w.r.t.x. : x−2


Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`


Find `dy/dx if y = x^2 + 1/x^2`


Find `dy/dx if y=(sqrtx+1)^2`


Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`


Find `dy/dx if y = ((logx+1))/x`


The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.


The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.


Differentiate the following w.r.t.x :

y = `x^(4/3) + "e"^x - sinx`


Differentiate the following w.r.t.x :

y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×