Advertisements
Advertisements
Question
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Solution
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x) (7^x + x^7 - 2/3 xsqrt(x) - log x + 7^7)`
∴ `("d"y)/("d"x) = "d"/("d"x) (7^x) + "d"/("d"x) (x^7) - 2/3 "d"/("d"x) (x^(3/2)) - "d"/("d"x) (logx) + "d"/("d"x) 7^7`
= `7^x log 7 + 7x^6 - 2/3 xx 3/2 x^(3/2 - 1) - 1/x + 0`
= `7^x log 7 + 7x^6 - x^(1/2) - 1/x`
= `7^x log 7 + 7x^6 - sqrt(x) - 1/x`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Find the derivative of the following function by the first principle: 3x2 + 4
Find the derivative of the following function by the first principle: `x sqrtx`
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
Differentiate the following function w.r.t.x. : x−2
Differentiate the following function w.r.t.x. : `xsqrt x`
Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = "e"^x/logx`
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`