Advertisements
Advertisements
प्रश्न
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
उत्तर
y= `"e"^x/("e"^x + 1)`
Differentiating w.r.t. x, we get
`dy/dx = d/dx ("e"^x/("e"^x + 1))`
= `(("e"^x + 1)d/dx("e"^x) - "e"^"x" d/dx("e"^x + 1))/(("e"^x + 1)^2)`
= `(("e"^x + 1)"e"^x - "e"^x("e"^x + 0))/("e"^x + 1)^2`
= `("e"^x("e"^x + 1 - "e"^x))/("e"^x + 1)^2`
= `"e"^x/("e"^x + 1)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Differentiate the following function w.r.t.x. : `xsqrt x`
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = ((logx+1))/x`
Find `dy/dx if y = "e"^x/logx`
Find `dy/dx`if y = x log x (x2 + 1)
If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.
Differentiate the following w.r.t.x :
y = `sqrt(x) + tan x - x^3`
Differentiate the following w.r.t.x :
y = `log x - "cosec" x + 5^x - 3/(x^(3/2))`
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =