Advertisements
Advertisements
प्रश्न
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
उत्तर
Given, D =` ("P"+ 5)/("P" - 1)`
Marginal demand =`("dD")/("dP")= "d"/("dP")(("P"+ 5)/("P" - 1))`
= `(("P" - 1)"d"/("dP")("P"+ 5) - ("P"+ 5)"d"/("dP")("P" - 1))/("P" - 1)^2`
= `(("P" - 1)(1 + 0) - ("P"+ 5)(1 - 0))/("P" - 1)^2`
=`("P" - 1 - "P" - 5)/(("P" - 1)^2`
=`(-6)/(("P" - 1)^2`
When P = 2,
Marginal demand,`(("dP")/("dP"))_("P" = 2) =(-6)/(2 - 1)^2 = -6`
∴ When price is 2, marginal demand is – 6.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Differentiate the following function w.r.t.x. : `x/log x`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = ((logx+1))/x`
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =