Advertisements
Advertisements
Question
Find `dy/dx if y = ((logx+1))/x`
Solution
`y=((logx + 1))/x`
Differentiating w.r.t. x, we get
`dy/dx=d/dx[(logx + 1)/x]`
= `(xd/dx(logx + 1) - (logx + 1)d/dx(x))/x^2`
= `(x(1/x + 0) - (logx + 1)(1))/x^2`
= `(1 - logx - 1)/x^2`
=`(-logx)/x^2`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Find the derivative of the following function by the first principle: 3x2 + 4
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Differentiate the following function w.r.t.x. : `xsqrt x`
Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx` if y = (1 – x) (2 – x)
Find `dy/dx if y=(1+x)/(2+x)`
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.
Differentiate the following w.r.t.x :
y = `sqrt(x) + tan x - x^3`