English

Find the Equation of the Plane Through the Line of Intersection of the Planes X + 2y + 3z + 4 = 0 and X − Y + Z + 3 = 0 and Passing Through the Origin. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the plane through the line of intersection of the planes x + 2y + 3z + 4 = 0 and x − y + z + 3 = 0 and passing through the origin.

 
Sum

Solution

\[\text{ The equation of the plane passing through the line of intersection of the given planes is} \]

\[x + 2y + 3z + 4 + \lambda \left( x - y + z + 3 \right) = 0 . . . \left( 1 \right)\]

\[ \text{ This passes through (0, 0, 0). So } ,\]

\[0 + 0 + 0 + 4 + \lambda \left( 0 - 0 + 0 + 3 \right) = 0\]

\[ \Rightarrow 4 + 3\lambda = 0\]

\[ \Rightarrow \lambda = \frac{- 4}{3}\]

\[ \text{ Substituting this in (1), we get } \]

\[x + 2y + 3z + 4 - \frac{4}{3}\left( x - y + z + 3 \right) = 0 \]

\[ \Rightarrow - x + 10y + 5z = 0\]

\[ \Rightarrow x - 10y - 5z = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.08 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.08 | Q 7 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the sum of intercepts cut off by the plane `vecr.(2hati+hatj-k)-5=0` on the three axes

 


Find the intercepts cut off by the plane 2x + y – z = 5.


Prove that if a plane has the intercepts abc and is at a distance of P units from the origin, then `1/a^2 + 1/b^2 + 1/c^2 = 1/p^2`


if z = x + iy, `w = (2 -iz)/(2z - i)` and |w| = 1. Find the locus of z and illustrate it in the Argand Plane.


Write the equation of the plane whose intercepts on the coordinate axes are 2, −3 and 4.

 

Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
4x + 3y − 6z − 12 = 0


Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

2x − y + z = 5

 

 


Find the equation of a plane which meets the axes at AB and C, given that the centroid of the triangle ABC is the point (α, β, γ). 


Find the equation of the plane passing through the point (2, 4, 6) and making equal intercepts on the coordinate axes.


A plane meets the coordinate axes at AB and C, respectively, such that the centroid of triangle ABC is (1, −2, 3). Find the equation of the plane.


Find the equation of the plane with intercept 3 on the y-axis and parallel to the ZOX plane.

 

Find the equation of the plane through the point \[2 \hat{i}  + \hat{j} - \hat{k} \] and passing through the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} - \hat{k}  \right) = 0 \text{ and }  \vec{r} \cdot \left( \hat{j} + 2 \hat{k}  \right) = 0 .\]

 

Find the equation of the plane passing through the line of intersection of the planes 2x − y = 0 and 3z − y = 0 and perpendicular to the plane 4x + 5y − 3z = 8


Find the vector equation (in scalar product form) of the plane containing the line of intersection of the planes x − 3y + 2z − 5 = 0 and 2x − y + 3z − 1 = 0 and passing through (1, −2, 3).


Find the equation of the plane passing through the intersection of the planes 2x + 3y − z+ 1 = 0 and x + y − 2z + 3 = 0 and perpendicular to the plane 3x − y − 2z − 4 = 0.

 

Find the equation of the plane through the line of intersection of the planes  \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} \right) + 6 = 0  \text{ and } \vec{r} \cdot \left( 3 \hat{i} - \hat{j}  - 4 \hat{k}  \right) = 0,\] which is at a unit distance from the origin.

 

Find the equation of the plane that contains the line of intersection of the planes  \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) - 4 = 0 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  + \hat{j} - \hat{k}  \right) + 5 = 0\] and which is perpendicular  to the plane \[\vec{r} \cdot \left( 5 \hat{i}  + 3 \hat{j}  - 6 \hat{k}  \right) + 8 = 0 .\]

  

Find the vector equation of the plane through the line of intersection of the planes x + yz = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0.

 

Find the equation of the plane which contains the line of intersection of the planes x \[+\]  2y \[+\]  3 \[z   - \]  4 \[=\]  0 and 2 \[x + y - z\] \[+\] 5  \[=\] 0 and whose x-intercept is twice its z-intercept. Hence, write the equation of the plane passing through the point (2, 3,  \[-\] 1) and parallel to the plane obtained above.


Find the equation of the plane through the line of intersection of the planes \[x + y + z =\]1 and 2x \[+\] 3 \[+\] y \[+\] 4\[z =\] 5 and twice of its \[y\] -intercept is equal to three times its \[z\]-intercept

 

 Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`


Find the locus of a complex number, z = x + iy, satisfying the relation `|[ z -3i}/{z +3i]| ≤ sqrt2 `. Illustrate the locus of z in the Argand plane.


Find the length of the intercept, cut off by the plane 2x + y − z = 5 on the x-axis

A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.


The intercepts made by the plane 2x – 3y + 5z + 4 = 0 on the coordinate axes are `-2, 4/3, (-4)/5`.


The intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 are:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×