English

Find the Equation of the Plane Which Contains the Line of Intersection of the Planes X + 2y + 3z − 4 = 0 and 2x + Y − Z + 5 = 0 and Which is Perpendicular to the Plane 5x + 3y − 6z + 8 = 0. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the plane which contains the line of intersection of the planes x + 2y + 3z − 4 = 0 and 2x + y − z + 5 = 0 and which is perpendicular to the plane 5x + 3y − 6z+ 8 = 0.

Sum

Solution

\[\text{ The equation of the plane passing through the line of intersection of the given planes is } \]
\[x + 2y + 3z - 4 + \lambda \left( 2x + y - z + 5 \right) = 0 \]
\[\left( 1 + 2\lambda \right)x + \left( 2 + \lambda \right)y + \left( 3 - \lambda \right)z - 4 + 5\lambda = 0 . . . \left( 1 \right)\]
\[\text{ This plane is perpendicular to 5x + 3y - 6z + 8 = 0 . So } ,\]
\[5 \left( 1 + 2\lambda \right) + 3\left( 2 + \lambda \right) - 6 \left( 3 - \lambda \right) =\text{  0 }(\text{ Because } a_1 a_2 + b_1 b_2 + c_1 c_2 = 0)\]
\[ \Rightarrow 5 + 10\lambda + 6 + 3\lambda - 18 + 6\lambda = 0\]
\[ \Rightarrow 19\lambda - 7 = 0\]
\[ \Rightarrow \lambda = \frac{7}{19}\]
\[\text{ Substituting this in (1), we get } \]
\[\left( 1 + 2 \left( \frac{7}{19} \right) \right)x + \left( 2 + \frac{7}{19} \right)y + \left( 3 - \frac{7}{19} \right)z - 4 + 5 \left( \frac{7}{19} \right) = 0\]
\[ \Rightarrow 33x + 45y + 50z - 41 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.08 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.08 | Q 6 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the sum of intercepts cut off by the plane `vecr.(2hati+hatj-k)-5=0` on the three axes

 


Prove that if a plane has the intercepts abc and is at a distance of P units from the origin, then `1/a^2 + 1/b^2 + 1/c^2 = 1/p^2`


A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is `1/x^2 + 1/y^2 + 1/z^2 = 1/p^2`


if z = x + iy, `w = (2 -iz)/(2z - i)` and |w| = 1. Find the locus of z and illustrate it in the Argand Plane.


Write the equation of the plane whose intercepts on the coordinate axes are 2, −3 and 4.

 

Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
4x + 3y − 6z − 12 = 0


Find the equation of the plane passing through the point (2, 4, 6) and making equal intercepts on the coordinate axes.


Find the equation of the plane with intercept 3 on the y-axis and parallel to the ZOX plane.

 

Find the equation of the plane through the point \[2 \hat{i}  + \hat{j} - \hat{k} \] and passing through the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} - \hat{k}  \right) = 0 \text{ and }  \vec{r} \cdot \left( \hat{j} + 2 \hat{k}  \right) = 0 .\]

 

Find the equation of the plane through the line of intersection of the planes x + 2y + 3z + 4 = 0 and x − y + z + 3 = 0 and passing through the origin.

 

Find the vector equation (in scalar product form) of the plane containing the line of intersection of the planes x − 3y + 2z − 5 = 0 and 2x − y + 3z − 1 = 0 and passing through (1, −2, 3).


Find the equation of the plane passing through the intersection of the planes 2x + 3y − z+ 1 = 0 and x + y − 2z + 3 = 0 and perpendicular to the plane 3x − y − 2z − 4 = 0.

 

Find the equation of the plane passing through the intersection of the planes  \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) = 7, \vec{r} \cdot \left( 2 \hat{i}  + 5 \hat{j} + 3 \hat{k}  \right) = 9\] and the point (2, 1, 3).

 

A plane makes intercepts −6, 3, 4 respectively on the coordinate axes. Find the length of the perpendicular from the origin on it.


Find the equation of the plane through the intersection of the planes 3x − y + 2z = 4 and x + y + z = 2 and the point (2, 2, 1).


Find the vector equation of the plane passing through the intersection of the planes

\[\vec{r} \cdot \left( \hat{ i } + \hat{ j }+ \hat{ k }\right) = \text{ 6 and }\vec{r} \cdot \left( \text{ 2  } \hat{ i} +\text{  3 } \hat{  j } + \text{ 4 } \hat{ k } \right) = - 5\] and the point (1, 1, 1).


Find the equation of the plane which contains the line of intersection of the planes x \[+\]  2y \[+\]  3 \[z   - \]  4 \[=\]  0 and 2 \[x + y - z\] \[+\] 5  \[=\] 0 and whose x-intercept is twice its z-intercept. Hence, write the equation of the plane passing through the point (2, 3,  \[-\] 1) and parallel to the plane obtained above.


Find the equation of the plane through the line of intersection of the planes \[x + y + z =\]1 and 2x \[+\] 3 \[+\] y \[+\] 4\[z =\] 5 and twice of its \[y\] -intercept is equal to three times its \[z\]-intercept

 

 Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`


Find the locus of a complex number, z = x + iy, satisfying the relation `|[ z -3i}/{z +3i]| ≤ sqrt2 `. Illustrate the locus of z in the Argand plane.


Find the length of the intercept, cut off by the plane 2x + y − z = 5 on the x-axis

A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.


The intercepts made by the plane 2x – 3y + 5z + 4 = 0 on the coordinate axes are `-2, 4/3, (-4)/5`.


The intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 are:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×