Advertisements
Advertisements
Question
The intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 are:
Options
`(-3)/2, -3, (-3)/2`
`3/2, 3, (-3)/2`
`3/2, -3, (-3)/2`
`3/2, 3, 3/2`
Solution
`3/2, 3, (-3)/2`
Explanation:
Given the equation of the plane is
2x + y − 2z = 3
Divide by 3 on both sides
`(2"x")/3 + "y"/3 - (2"z")/3 = 1`
or `"x"/(3/2) + "y"/3 + "z"/((-3)/2) = 1`
Hence, the intercepts made on coordinates axes are `3/2, 3, (-3)/2`.
APPEARS IN
RELATED QUESTIONS
Write the sum of intercepts cut off by the plane `vecr.(2hati+hatj-k)-5=0` on the three axes
Find the intercepts cut off by the plane 2x + y – z = 5.
Prove that if a plane has the intercepts a, b, c and is at a distance of P units from the origin, then `1/a^2 + 1/b^2 + 1/c^2 = 1/p^2`
Write the equation of the plane whose intercepts on the coordinate axes are 2, −3 and 4.
Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
4x + 3y − 6z − 12 = 0
Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
2x − y + z = 5
Find the equation of the plane passing through the point (2, 4, 6) and making equal intercepts on the coordinate axes.
Find the equation of the plane with intercept 3 on the y-axis and parallel to the ZOX plane.
Find the equation of the plane through the line of intersection of the planes x + 2y + 3z + 4 = 0 and x − y + z + 3 = 0 and passing through the origin.
Find the vector equation (in scalar product form) of the plane containing the line of intersection of the planes x − 3y + 2z − 5 = 0 and 2x − y + 3z − 1 = 0 and passing through (1, −2, 3).
Find the equation of the plane that is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z − 4 = 0, 2x + y − z + 5 = 0.
Find the equation of the plane passing through the intersection of the planes 2x + 3y − z+ 1 = 0 and x + y − 2z + 3 = 0 and perpendicular to the plane 3x − y − 2z − 4 = 0.
Find the equation of the plane through the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} \right) + 6 = 0 \text{ and } \vec{r} \cdot \left( 3 \hat{i} - \hat{j} - 4 \hat{k} \right) = 0,\] which is at a unit distance from the origin.
Find the equation of the plane that contains the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) - 4 = 0 \text{ and } \vec{r} \cdot \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + 5 = 0\] and which is perpendicular to the plane \[\vec{r} \cdot \left( 5 \hat{i} + 3 \hat{j} - 6 \hat{k} \right) + 8 = 0 .\]
Find the equation of the plane passing through the intersection of the planes \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) = 7, \vec{r} \cdot \left( 2 \hat{i} + 5 \hat{j} + 3 \hat{k} \right) = 9\] and the point (2, 1, 3).
A plane makes intercepts −6, 3, 4 respectively on the coordinate axes. Find the length of the perpendicular from the origin on it.
Find the equation of the plane through the intersection of the planes 3x − y + 2z = 4 and x + y + z = 2 and the point (2, 2, 1).
Find the vector equation of the plane through the line of intersection of the planes x + y+ z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0.
Find the vector equation of the plane passing through the intersection of the planes
\[\vec{r} \cdot \left( \hat{ i } + \hat{ j }+ \hat{ k }\right) = \text{ 6 and }\vec{r} \cdot \left( \text{ 2 } \hat{ i} +\text{ 3 } \hat{ j } + \text{ 4 } \hat{ k } \right) = - 5\] and the point (1, 1, 1).
Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`
The intercepts made by the plane 2x – 3y + 5z + 4 = 0 on the coordinate axes are `-2, 4/3, (-4)/5`.
The equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2) is: