मराठी

The intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 are: - Mathematics

Advertisements
Advertisements

प्रश्न

The intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 are:

पर्याय

  • `(-3)/2, -3, (-3)/2`

  • `3/2, 3, (-3)/2`

  • `3/2, -3, (-3)/2`

  • `3/2, 3, 3/2`

MCQ

उत्तर

`3/2, 3, (-3)/2`

Explanation:

Given the equation of the plane is

 2x + y − 2z = 3

Divide by 3 on both sides

`(2"x")/3 + "y"/3 - (2"z")/3 = 1`

or `"x"/(3/2) + "y"/3 + "z"/((-3)/2) = 1`

Hence, the intercepts made on coordinates axes are `3/2, 3, (-3)/2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that if a plane has the intercepts abc and is at a distance of P units from the origin, then `1/a^2 + 1/b^2 + 1/c^2 = 1/p^2`


Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

 2x + 3y − z = 6


Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes. 

2x − y + z = 5

 

 


Find the equation of the plane with intercept 3 on the y-axis and parallel to the ZOX plane.

 

Find the equation of the plane through the point \[2 \hat{i}  + \hat{j} - \hat{k} \] and passing through the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} - \hat{k}  \right) = 0 \text{ and }  \vec{r} \cdot \left( \hat{j} + 2 \hat{k}  \right) = 0 .\]

 

Find the equation of the plane passing through the line of intersection of the planes 2x − y = 0 and 3z − y = 0 and perpendicular to the plane 4x + 5y − 3z = 8


Find the equation of the plane which contains the line of intersection of the planes x + 2y + 3z − 4 = 0 and 2x + y − z + 5 = 0 and which is perpendicular to the plane 5x + 3y − 6z+ 8 = 0.


Find the vector equation (in scalar product form) of the plane containing the line of intersection of the planes x − 3y + 2z − 5 = 0 and 2x − y + 3z − 1 = 0 and passing through (1, −2, 3).


Find the equation of the plane that is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z − 4 = 0, 2x + y − z + 5 = 0.

 

Find the equation of the plane through the line of intersection of the planes  \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} \right) + 6 = 0  \text{ and } \vec{r} \cdot \left( 3 \hat{i} - \hat{j}  - 4 \hat{k}  \right) = 0,\] which is at a unit distance from the origin.

 

Find the equation of the plane passing through the intersection of the planes  \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) = 7, \vec{r} \cdot \left( 2 \hat{i}  + 5 \hat{j} + 3 \hat{k}  \right) = 9\] and the point (2, 1, 3).

 

A plane makes intercepts −6, 3, 4 respectively on the coordinate axes. Find the length of the perpendicular from the origin on it.


Find the equation of the plane through the intersection of the planes 3x − y + 2z = 4 and x + y + z = 2 and the point (2, 2, 1).


Find the vector equation of the plane through the line of intersection of the planes x + yz = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0.

 

Find the vector equation of the plane passing through the intersection of the planes

\[\vec{r} \cdot \left( \hat{ i } + \hat{ j }+ \hat{ k }\right) = \text{ 6 and }\vec{r} \cdot \left( \text{ 2  } \hat{ i} +\text{  3 } \hat{  j } + \text{ 4 } \hat{ k } \right) = - 5\] and the point (1, 1, 1).


Find the equation of the plane which contains the line of intersection of the planes x \[+\]  2y \[+\]  3 \[z   - \]  4 \[=\]  0 and 2 \[x + y - z\] \[+\] 5  \[=\] 0 and whose x-intercept is twice its z-intercept. Hence, write the equation of the plane passing through the point (2, 3,  \[-\] 1) and parallel to the plane obtained above.


Find the equation of the plane through the line of intersection of the planes \[x + y + z =\]1 and 2x \[+\] 3 \[+\] y \[+\] 4\[z =\] 5 and twice of its \[y\] -intercept is equal to three times its \[z\]-intercept

 

 Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`


Find the locus of a complex number, z = x + iy, satisfying the relation `|[ z -3i}/{z +3i]| ≤ sqrt2 `. Illustrate the locus of z in the Argand plane.


Find the length of the intercept, cut off by the plane 2x + y − z = 5 on the x-axis

The intercepts made by the plane 2x – 3y + 5z + 4 = 0 on the coordinate axes are `-2, 4/3, (-4)/5`.


The equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2) is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×