Advertisements
Advertisements
प्रश्न
Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
2x − y + z = 5
उत्तर
Equation of the given plane is
\[2x - y + z = 5\]
\[\text{ Dividng both sides by 5, we get } \]
\[\frac{2x}{5} + \frac{- y}{5} + \frac{z}{5} = \frac{5}{5}\]
\[ \Rightarrow \frac{x}{\left( \frac{5}{2} \right)} + \frac{y}{- 5} + \frac{z}{5} = 1 . . . \left( 1 \right)\]
\[\text{ We know that the equation of the plane whose intercepts on the coordianate axes are a,b and c is } \]
\[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 . . . \left( 2 \right)\]
\[\text{ Comparing (1) and (2), we get } \]
\[a = \frac{5}{2}; b = - 5; c = 5\]
APPEARS IN
संबंधित प्रश्न
Write the sum of intercepts cut off by the plane `vecr.(2hati+hatj-k)-5=0` on the three axes
Find the intercepts cut off by the plane 2x + y – z = 5.
Prove that if a plane has the intercepts a, b, c and is at a distance of P units from the origin, then `1/a^2 + 1/b^2 + 1/c^2 = 1/p^2`
A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is `1/x^2 + 1/y^2 + 1/z^2 = 1/p^2`
if z = x + iy, `w = (2 -iz)/(2z - i)` and |w| = 1. Find the locus of z and illustrate it in the Argand Plane.
Reduce the equations of the following planes to intercept form and find the intercepts on the coordinate axes.
2x + 3y − z = 6
Find the equation of the plane passing through the point (2, 4, 6) and making equal intercepts on the coordinate axes.
Find the equation of the plane with intercept 3 on the y-axis and parallel to the ZOX plane.
Find the equation of the plane through the point \[2 \hat{i} + \hat{j} - \hat{k} \] and passing through the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 3 \hat{j} - \hat{k} \right) = 0 \text{ and } \vec{r} \cdot \left( \hat{j} + 2 \hat{k} \right) = 0 .\]
Find the equation of the plane passing through the line of intersection of the planes 2x − y = 0 and 3z − y = 0 and perpendicular to the plane 4x + 5y − 3z = 8
Find the equation of the plane which contains the line of intersection of the planes x + 2y + 3z − 4 = 0 and 2x + y − z + 5 = 0 and which is perpendicular to the plane 5x + 3y − 6z+ 8 = 0.
Find the equation of the plane through the line of intersection of the planes x + 2y + 3z + 4 = 0 and x − y + z + 3 = 0 and passing through the origin.
Find the vector equation (in scalar product form) of the plane containing the line of intersection of the planes x − 3y + 2z − 5 = 0 and 2x − y + 3z − 1 = 0 and passing through (1, −2, 3).
Find the equation of the plane that contains the line of intersection of the planes \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) - 4 = 0 \text{ and } \vec{r} \cdot \left( 2 \hat{i} + \hat{j} - \hat{k} \right) + 5 = 0\] and which is perpendicular to the plane \[\vec{r} \cdot \left( 5 \hat{i} + 3 \hat{j} - 6 \hat{k} \right) + 8 = 0 .\]
Find the equation of the plane passing through the intersection of the planes \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) = 7, \vec{r} \cdot \left( 2 \hat{i} + 5 \hat{j} + 3 \hat{k} \right) = 9\] and the point (2, 1, 3).
A plane makes intercepts −6, 3, 4 respectively on the coordinate axes. Find the length of the perpendicular from the origin on it.
Find the equation of the plane through the intersection of the planes 3x − y + 2z = 4 and x + y + z = 2 and the point (2, 2, 1).
Find the vector equation of the plane through the line of intersection of the planes x + y+ z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0.
Find the equation of the plane which contains the line of intersection of the planes x \[+\] 2y \[+\] 3 \[z - \] 4 \[=\] 0 and 2 \[x + y - z\] \[+\] 5 \[=\] 0 and whose x-intercept is twice its z-intercept. Hence, write the equation of the plane passing through the point (2, 3, \[-\] 1) and parallel to the plane obtained above.
Find the equation of the plane through the line of intersection of the planes \[x + y + z =\]1 and 2x \[+\] 3 \[+\] y \[+\] 4\[z =\] 5 and twice of its \[y\] -intercept is equal to three times its \[z\]-intercept
Find the length of the perpendicular from origin to the plane `vecr. (3i - 4j-12hatk)+39 = 0`
Find the locus of a complex number, z = x + iy, satisfying the relation `|[ z -3i}/{z +3i]| ≤ sqrt2 `. Illustrate the locus of z in the Argand plane.
A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.
The equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2) is:
The intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 are: