Advertisements
Advertisements
Question
Find the following product: (3x + 5) (3x + 11)
Solution
Here, we will use the identity \[\left( x + a \right)\left( x + b \right) = x^2 + \left( a + b \right)x + ab\].
\[\left( 3x + 5 \right)\left( 3x + 11 \right)\]
\[ = \left( 3x \right)^2 + \left( 5 + 11 \right)\left( 3x \right) + 5 \times 11\]
\[ = 9 x^2 + 48x + 55\]
APPEARS IN
RELATED QUESTIONS
Show that (3x + 7)2 − 84x = (3x − 7)2
Simplify the following using the identities: 178 × 178 − 22 × 22
Find the value of x, if 4x = (52)2 − (48)2.
Find the following product: (x − 3) ( x − 2)
Find the following product: \[\left( y^2 + \frac{5}{7} \right)\left( y^2 - \frac{14}{5} \right)\]
Evaluate the following: 109 × 107
If (x + y + z) = 9 and (xy + yz + zx) = 26, then find the value of x2 + y2 + z2
Multiply the following:
(2x – 2y – 3), (x + y + 5)
Simplify:
(a – b) (a2 + b2 + ab) – (a + b) (a2 + b2 – ab)
Expand the following, using suitable identities.
(x2y – xy2)2