Advertisements
Advertisements
Question
Find the product of the following binomial: (a + 2b)(a − 2b)
Solution
We will use the identity
\[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] in the given expression to find the product.
\[\left( a + 2b \right)\left( a - 2b \right)\]
\[ = a^2 - \left( 2b \right)^2 \]
\[ = a^2 - 4 b^2\]
APPEARS IN
RELATED QUESTIONS
Multiply the binomials.
(y − 8) and (3y − 4)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05:
xz(x2 + y2)
Find the product of the following binomial: (2x + y)(2x + y)
Find the product of the following binomial: \[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
Find the product of the following binomial: \[\left( 2x + \frac{3}{y} \right)\left( 2x - \frac{3}{y} \right)\]
Find the product of the following binomial: (2a3 + b3)(2a3 − b3)
Find the product of the following binomial: \[\left( x^3 + \frac{1}{x^3} \right)\left( x^3 - \frac{1}{x^3} \right)\]
Using the formula for squaring a binomial, evaluate the following: (102)2
Using the formula for squaring a binomial, evaluate the following: (99)2