Advertisements
Advertisements
Question
Find the product of the following binomial: \[\left( x^3 + \frac{1}{x^3} \right)\left( x^3 - \frac{1}{x^3} \right)\]
Solution
We will use the identity
\[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] in the given expression to find the product.
\[\left( x^3 + \frac{1}{x^3} \right)\left( x^3 - \frac{1}{x^3} \right)\]
\[ = \left( x^3 \right)^2 - \left( \frac{1}{x^3} \right)^2 \]
\[ = x^6 - \frac{1}{x^6}\]
APPEARS IN
RELATED QUESTIONS
Multiply the binomials.
(a + 3b) and (x + 5)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Find the Product.
(5 − 2x) (3 + x)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: 15y2(2 − 3x)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: −3x(y2 + z2)
Find the product of the following binomial: (2x + y)(2x + y)
Using the formula for squaring a binomial, evaluate the following: (99)2
Using the formula for squaring a binomial, evaluate the following: (999)2
Using the formula for squaring a binomial, evaluate the following: (703)2
Multiply the following:
b3, 3b2, 7ab5