Advertisements
Advertisements
Question
Find the term t15 of an A.P. : 4, 9, 14, …………..
Solution
We need to find the 15th term of the A.P., 4, 9, 14
Here, the initial term is, a = 4.
Common difference = 14 - 9 = 9 - 4 = 5
The general term of an A.P is given by the formula,
tn = a + (n - 1)d
t15 = 4 + (15 - 1) × 5
t15 = 4 + 14 × 5
t15 = 4 + 70
t15 = 74
RELATED QUESTIONS
If the 9th term of an A.P. is zero, then prove that 29th term is double of 19th term.
Find the sum of the following arithmetic series:
34 + 32 + 30 +...+10
Decide whether the following sequence is an A.P., if so find the 20th term of the progression:
–12, –5, 2, 9, 16, 23, 30, ..............
Find the 19th term of the following A.P.:
7, 13, 19, 25, ...
Six year before, the age of mother was equal to the square of her son's age. Three year hence, her age will be thrice the age of her son then. Find the present ages of the mother and son.
Select the correct alternative and write it.
What is the sum of first n natural numbers ?
Select the correct alternative and write it.
If a share is at premium, then -
If the sum of first n terms of an AP is n2, then find its 10th term.
Choose the correct alternative answer for the following sub-question
If the third term and fifth term of an A.P. are 13 and 25 respectively, find its 7th term
Decide whether the given sequence 24, 17, 10, 3, ...... is an A.P.? If yes find its common term (tn)
How many two-digit numbers are divisible by 5?
Activity :- Two-digit numbers divisible by 5 are, 10, 15, 20, ......, 95.
Here, d = 5, therefore this sequence is an A.P.
Here, a = 10, d = 5, tn = 95, n = ?
tn = a + (n − 1) `square`
`square` = 10 + (n – 1) × 5
`square` = (n – 1) × 5
`square` = (n – 1)
Therefore n = `square`
There are `square` two-digit numbers divisible by 5
Decide whether 301 is term of given sequence 5, 11, 17, 23, .....
Activity :- Here, d = `square`, therefore this sequence is an A.P.
a = 5, d = `square`
Let nth term of this A.P. be 301
tn = a + (n – 1) `square`
301 = 5 + (n – 1) × `square`
301 = 6n – 1
n = `302/6` = `square`
But n is not positive integer.
Therefore, 301 is `square` the term of sequence 5, 11, 17, 23, ......
The nth term of an A.P. 5, 8, 11, 14, ...... is 68. Find n = ?
If p - 1, p + 3, 3p - 1 are in AP, then p is equal to ______.
In an A.P. if the sum of third and seventh term is zero. Find its 5th term.
Write the next two terms of the A.P.: `sqrt(27), sqrt(48), sqrt(75)`......