Advertisements
Advertisements
Question
Find the mean using the step deviation method.
Class | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
Frequency | 6 | 10 | 15 | 9 | 10 |
Sum
Solution
Let us a = 25,
h = 10,
then di = xi - 25 and ui = `(x_i − 25)/10`
Class | Frequency (fi) | Class mark (xi) | di = xi - 25 | ui = `(x_i - 25)/10` | (fiui) |
0 - 10 | 6 | 5 | -20 | -2 | -12 |
10 - 20 | 10 | 15 | -10 | -1 | -10 |
20 - 30 | 15 | 25 | 0 | 0 | 0 |
30 - 40 | 9 | 35 | 10 | 1 | 9 |
40 - 50 | 10 | 45 | 20 | 2 | 20 |
Total | `sumf_i = 50` | `sumf_iu_i = 7` |
The mean of the data is given by,
`barx` = `a + ((sum f_i u_i)/(sum f_i)) xx h`
= `25 + (7/50) xx 10`
= `25 + 7/5`
= 25 + 1.4
= 26.4
shaalaa.com
Is there an error in this question or solution?