Advertisements
Advertisements
Question
Find the missing figures in the following table:
x | 0 | 5 | 10 | 15 | 20 | 25 |
y | 7 | 11 | - | 18 | - | 32 |
Solution
Here y0 = 7
y1 = 11
y2 = ?
y3 = 18
y4 = ?
y5 = 32
Since only four values of f(x) are given
The polynomial which fits the data is of degree three.
Hence fourth differences are zeros.
Δ4yk = 0
(i.e) (E – 1)4yk = 0
(i.e) (E4 – 4E3 + 6E2 – 4E + 1)yk = 0 ........(1)
Put k = 0 in (1)
(E4 – 4E3 + 6E2 – 4E + 1)y0 = 0
E4y0 – 4E3y0 + 6E2y0 – 4Ey0 + y0 = 0
y4 – 4y3 + 6y2 – 4y1 + y0 = 0
y4 – 4(18) + 6y2 – 4(11) + 7 = 0
y4 – 72 + 6y2 – 44 + 7 = 0
y4 + 6y2 = 109 .........(2)
Put k = 1 in (1)
(E4 – 4E3 + 6E2 – 4E + 1)y1 = 0
[E4 y1 – 4E y1 + 6E2 y1 – 4Ey1 + y] = 0
y5 – 4y4 + 6y3 – 4y2 + y1 = 0
32 – 4(y4) + 6(18) — 4(y2) + 11 = 0
32 – 4y4 + 108 – 4y2 + 11 = 0
– 4y4 – 4y2 + 151 = 0
4y4 + 4y2 = 151 .........(3)
Solving equation (1) and (2)
Equation (1) × 4 ⇒ 4y4 + 24y2 = 436
Equation (2) ⇒ 4y4 + 4y2 = 151
(–) (–) (–)
20y2 = 285
y2 = `285/20`
⇒ y2 = 14.25
Substitute y2 = 14.25 in equation (1)
y4 + 6(14.25) = 109
y4 + 25.50 = 109
y4 = 109 – 85.5
∴ y4 = 23.5
∴ Required two missing values are 14.25 and 23.5.
APPEARS IN
RELATED QUESTIONS
The following data relates to indirect labour expenses and the level of output
Months | Jan | Feb | Mar |
Units of output | 200 | 300 | 400 |
Indirect labour expenses (Rs) |
2500 | 2800 | 3100 |
Months | Apr | May | June |
Units of output | 640 | 540 | 580 |
Indirect labour expenses (Rs) |
3820 | 3220 | 3640 |
Estimate the expenses at a level of output of 350 units, by using graphic method.
Using Newton’s forward interpolation formula find the cubic polynomial.
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 1 | 10 |
The population of a city in a censes taken once in 10 years is given below. Estimate the population in the year 1955.
Year | 1951 | 1961 | 1971 | 1981 |
Population in lakhs |
35 | 42 | 58 | 84 |
Find the value of f(x) when x = 32 from the following table:
x | 30 | 5 | 40 | 45 | 50 |
f(x) | 15.9 | 14.9 | 14.1 | 13.3 | 12.5 |
The following data gives the melting point of a alloy of lead and zinc where ‘t’ is the temperature in degree c and P is the percentage of lead in the alloy.
P | 40 | 50 | 60 | 70 | 80 | 90 |
T | 180 | 204 | 226 | 250 | 276 | 304 |
Find the melting point of the alloy containing 84 percent lead.
Use Lagrange’s formula and estimate from the following data the number of workers getting income not exceeding Rs. 26 per month.
Income not exceeding (₹) |
15 | 25 | 30 | 35 |
No. of workers | 36 | 40 | 45 | 48 |
Using interpolation estimate the business done in 1985 from the following data
Year | 1982 | 1983 | 1984 | 1986 |
Business done (in lakhs) |
150 | 235 | 365 | 525 |
Using interpolation, find the value of f(x) when x = 15
x | 3 | 7 | 11 | 19 |
f(x) | 42 | 43 | 47 | 60 |
A second degree polynomial passes though the point (1, –1) (2, –1) (3, 1) (4, 5). Find the polynomial
Using Lagrange’s interpolation formula find a polynominal which passes through the points (0, –12), (1, 0), (3, 6) and (4, 12)