English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 12

Find the missing figures in the following table: x 0 5 10 15 20 25 y 7 11 - 18 - 32 - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Find the missing figures in the following table:

x 0 5 10 15 20 25
y 7 11 - 18 - 32
Sum

Solution

Here y0 = 7

y1 = 11

y2 = ?

y3 = 18

y4 = ?

y5 = 32

Since only four values of f(x) are given

The polynomial which fits the data is of degree three.

Hence fourth differences are zeros.

Δ4yk = 0

(i.e) (E – 1)4yk = 0

(i.e) (E4 – 4E3 + 6E2 – 4E + 1)yk = 0  ........(1)

Put k = 0 in (1)

(E4 – 4E3 + 6E2 – 4E + 1)y0 = 0

E4y0 – 4E3y0 + 6E2y0 – 4Ey0 + y0 = 0

y4 – 4y3 + 6y2 – 4y1 + y0 = 0

y4 – 4(18) + 6y2 – 4(11) + 7 = 0

y4 – 72 + 6y2 – 44 + 7 = 0

y4 + 6y2 = 109  .........(2)

Put k = 1 in (1)

(E4 – 4E3 + 6E2 – 4E + 1)y1 = 0

[E4 y1 – 4E y1 + 6E2 y1 – 4Ey1 + y] = 0

y5 – 4y4 + 6y3 – 4y2 + y1 = 0

32 – 4(y4) + 6(18) — 4(y2) + 11 = 0

32 – 4y4 + 108 – 4y2 + 11 = 0

– 4y4 – 4y2 + 151 = 0

4y4 + 4y2 = 151  .........(3)

Solving equation (1) and (2)

Equation (1) × 4 ⇒ 4y4 + 24y2 = 436
Equation (2)       ⇒ 4y4 +   4y2  = 151
                               (–)   (–)        (–)      
                                        20y2  = 285

y2 = `285/20`

⇒ y2 = 14.25

Substitute y2 = 14.25 in equation (1)

y4 + 6(14.25) = 109

y4 + 25.50 = 109

y4 = 109 – 85.5

∴ y4 = 23.5

∴ Required two missing values are 14.25 and 23.5.

shaalaa.com
Interpolation
  Is there an error in this question or solution?
Chapter 5: Numerical Methods - Miscellaneous problems [Page 121]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 12 TN Board
Chapter 5 Numerical Methods
Miscellaneous problems | Q 4 | Page 121

RELATED QUESTIONS

The following data relates to indirect labour expenses and the level of output

Months Jan Feb Mar
Units of output 200 300 400
Indirect labour
expenses (Rs)
2500 2800 3100
Months Apr May June
Units of output 640 540 580
Indirect labour
expenses (Rs)
3820 3220 3640

Estimate the expenses at a level of output of 350 units, by using graphic method.


Using Newton’s forward interpolation formula find the cubic polynomial.

x 0 1 2 3
f(x) 1 2 1 10

The population of a city in a censes taken once in 10 years is given below. Estimate the population in the year 1955.

Year 1951 1961 1971 1981
Population in
lakhs
35 42 58 84

Find the value of f(x) when x = 32 from the following table:

x 30 5 40 45 50
f(x) 15.9 14.9 14.1 13.3 12.5

The following data gives the melting point of a alloy of lead and zinc where ‘t’ is the temperature in degree c and P is the percentage of lead in the alloy.

P 40 50 60 70 80 90
T 180 204 226 250 276 304

Find the melting point of the alloy containing 84 percent lead.


Use Lagrange’s formula and estimate from the following data the number of workers getting income not exceeding Rs. 26 per month.

Income not
exceeding (₹)
15 25 30 35
No. of workers 36 40 45 48

Using interpolation estimate the business done in 1985 from the following data

Year 1982 1983 1984 1986
Business done
(in lakhs)
150 235 365 525

Using interpolation, find the value of f(x) when x = 15

x 3 7 11 19
f(x) 42 43 47 60

A second degree polynomial passes though the point (1, –1) (2, –1) (3, 1) (4, 5). Find the polynomial


Using Lagrange’s interpolation formula find a polynominal which passes through the points (0, –12), (1, 0), (3, 6) and (4, 12)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×