Advertisements
Advertisements
Question
Find the value of :
`sin pi/8`
Solution
We know that sin2 θ = `(1 - cos 2θ)/2`
Substituting θ = `pi/8`, we get
`sin^2 pi/8 = (1 - cos pi/4)/2`
= `(1 - 1/sqrt2)/2`
= `(sqrt2 - 1)/(2sqrt2)`
∴ `sin pi/8 = sqrt((sqrt(2) - 1)/(2sqrt(2)))` ....`[∵ sin pi/8 "is positive"]`
∴ `sin pi/8 = sqrt((sqrt(2) - 1)/(2sqrt(2)) xx sqrt(2)/sqrt(2)`
= `sqrt((2 - sqrt2)/4)`
∴ `sin pi/8 = sqrt(2 - sqrt2)/2`
APPEARS IN
RELATED QUESTIONS
Prove the following:
`(tan5"A" - tan3"A")/(tan5"A" + tan3"A") = (sin2"A")/(sin8"A")`
Prove the following:
`sin pi^"c"/8 = 1/2sqrt(2 - sqrt(2))`
Find the value of :
`cos pi/8`
Prove the following:
`(1 - cos2theta)/(1 + cos2theta)` = tan2θ
Prove the following:
`(cosx + sinx)/(cosx - sinx) - (cosx - sinx)/(cosx + sinx)` = 2tan2x
Prove the following:
`sqrt(2 + sqrt(2 + sqrt(2 + 2cos8x)` = 2 cos x
Prove the following:
`(sin3x)/cosx + (cos3x)/sinx` = 2 cot 2x