Advertisements
Advertisements
Question
Prove the following:
`sqrt(2 + sqrt(2 + sqrt(2 + 2cos8x)` = 2 cos x
Solution
L.H.S. = `sqrt(2 + sqrt(2 + sqrt(2 + 2 cos 8x)`
= `sqrt(2 + sqrt(2 + sqrt(2(1 + cos8x)`
= `sqrt(2 + sqrt(2 + sqrt(2 xx 2cos^2 4x)`
= `sqrt(2 + sqrt(2 + 2cos4x)`
= `sqrt(2 + sqrt(2(1 + cos 4x)`
= `sqrt(2 + sqrt(2 xx 2 cos^2 2x)`
= `sqrt(2 + 2cos 2x)`
= `sqrt(2(1 + cos 2x)`
= `sqrt(2 xx 2cos^2x)`
= 2 cos x
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following:
`(tan5"A" - tan3"A")/(tan5"A" + tan3"A") = (sin2"A")/(sin8"A")`
Prove the following:
`sin pi^"c"/8 = 1/2sqrt(2 - sqrt(2))`
Find the value of :
`cos pi/8`
Prove the following:
`(1 - cos2theta)/(1 + cos2theta)` = tan2θ
Prove the following:
`(cosx + sinx)/(cosx - sinx) - (cosx - sinx)/(cosx + sinx)` = 2tan2x
Prove the following:
`(sin3x)/cosx + (cos3x)/sinx` = 2 cot 2x
Find the value of :
`sin pi/8`