Advertisements
Advertisements
Question
Find the value of k for which the equation x2 + k(2x + k − 1) + 2 = 0 has real and equal roots.
Solution
The given equation is x2+k(2x+k−1)+2=0.
⇒x2+2kx+k(k−1)+2=0
So, a = 1, b = 2k, c = k(k − 1) + 2
We know D=b2−4ac
⇒D=(2k)2 − 4 × 1 × [k(k − 1) + 2]
⇒D=4k2 − 4[k2 − k + 2]
⇒D=4k2 − 4k2 + 4k − 8
⇒D=4k − 8 = 4(k − 2)
For equal roots, D = 0
Thus, 4(k − 2) = 0
So, k = 2.
APPEARS IN
RELATED QUESTIONS
Without solving, examine the nature of roots of the equation 2x2 + 2x + 3 = 0
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
2x2 - 6x + 3 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
(k + 1)x2 - 2(3k + 1)x + 8k + 1 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
5x2 - 4x + 2 + k(4x2 - 2x - 1) = 0
Find the values of k for which the roots are real and equal in each of the following equation:
(k + 1)x2 - 2(k - 1)x + 1 = 0
If the roots of the equation (a2 + b2)x2 − 2 (ac + bd)x + (c2 + d2) = 0 are equal, prove that `a/b=c/d`.
For what value of k, the roots of the equation x2 + 4x + k = 0 are real?
If one root of the equation 2x² – px + 4 = 0 is 2, find the other root. Also find the value of p.
Discuss the nature of the roots of the following quadratic equations : `x^2 - (1)/(2)x + 4` = 0
Equation (x + 1)2 – x2 = 0 has ____________ real root(s).