Advertisements
Advertisements
Question
Find whether the following equation have real roots. If real roots exist, find them.
`x^2 + 5sqrt(5)x - 70 = 0`
Solution
Given equation is `x^2 + 5sqrt(5)x - 70` = 0
On company with ax2 + bx + c = 0, we get
a = 1, b = `5sqrt(5)` and c = – 70
∴ Discriminant, D = b2 – 4ac
= `(5sqrt(5))^2 - 4(1)(-70)`
= 125 + 280
= 405 > 0
Therefore, the equation `x^2 + 5sqrt(5)x - 70` = 0 has two distinct real roots.
Roots, `x = (-b +- sqrt(D))/(2a)`
= `(-5sqrt(5) +- sqrt(405))/(2(1))`
= `(-5sqrt(5) +- 9sqrt(5))/2`
= `(-5sqrt(5) + 9 sqrt(5))/2, (-5sqrt(5) - 9sqrt(5))/2`
= `(4sqrt(5))/2, - (14 sqrt(5))/2`
= `2sqrt(5), -7sqrt(5)`
APPEARS IN
RELATED QUESTIONS
Find the values of k for which the roots are real and equal in each of the following equation:
2kx2 - 40x + 25 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
2x2 + kx + 3 = 0
Find the value of the discriminant in the following quadratic equation :
x2 +2x+4=0
If x = 2 and x = 3 are roots of the equation 3x² – 2kx + 2m = 0. Find the values of k and m.
(x2 + 1)2 – x2 = 0 has ______.
Solve for x: 9x2 – 6px + (p2 – q2) = 0
If α and β be the roots of the equation x2 – 2x + 2 = 0, then the least value of n for which `(α/β)^n` = 1 is ______.
Find the value of k for which the roots of the quadratic equation 5x2 – 10x + k = 0 are real and equal.
Find the value of ‘c’ for which the quadratic equation
(c + 1) x2 - 6(c + 1) x + 3(c + 9) = 0; c ≠ - 1
has real and equal roots.
The roots of equation (q – r)x2 + (r – p)x + (p – q) = 0 are equal. Prove that: 2q = p + r, that is, p, q and r are in A.P.