Advertisements
Advertisements
Question
Find without division, the remainder in the following:
5x3 - 7x2 +3 is divided by (x-1)
Solution
5x3 - 7x2 +3 is divided by (x-1)
Putting x -1=0, we get: x = 1
Substituting this value of x in the equation, we get
5 x 1 x 1 x 1 - 7 x 1 x 1 + 3
= 5 - 7 + 3
= 1
APPEARS IN
RELATED QUESTIONS
Find the remainder when x4 – 3x2 + 2x + 1 is divided by x – 1.
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
Find the values of p and q in the polynomial f(x)= x3 - px2 + 14x -q, if it is exactly divisible by (x-1) and (x-2).
use the rernainder theorem to find the factors of ( a-b )3 + (b-c )3 + ( c-a)3
Find the remainder (without divisions) on dividing f(x) by x – 2, where f(x) = 5x2 – 1x + 4
Find the remainder (without division) on dividing 3x2 + 5x – 9 by (3x + 2)
Using the Remainder Theorem, factorise completely the following polynomial:
3x2 + 2x2 – 19x + 6
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 3x2 + 4x + 50, g(x) = x – 3
The polynomial p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7 when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.
Without actual division, prove that 2x4 – 5x3 + 2x2 – x + 2 is divisible by x2 – 3x + 2. [Hint: Factorise x2 – 3x + 2]