Advertisements
Advertisements
Question
Find x, if `[x, -5, -1][(1,0,2),(0,2,1),(2,0,3)][(x),(4),(1)] = O`
Solution
`[x -5 -1][(1,0,2), (0,2,1), (2,0,3)][(x),(4),(1)] = [0]`
∴ `[x -5 -1][(x + 0 + 2), (0 + 8 + 1), (2x + 0 + 3)] = [0]`
⇒ [x -5 -1]`[(x + 2), (9), (2x + 3)] = [0]`
⇒ [x(x + 2) - 45 - (2x + 3)] = 0
⇒ x2 + 2x - 45 - (2x + 3) = 0
⇒ x2 + 2x - 45 - 2x - 3 = 0
⇒ x2 - 48 = 0
⇒ x2 = 48
⇒ x = ±`sqrt48`
`= 4sqrt3`
APPEARS IN
RELATED QUESTIONS
if `A = [(1,0,2),(0,2,1),(2,0,3)]` , prove that `A^2 - 6A^2 + 7A + 2I = 0`
if A = `[(3, -2),(4,-2)] and l = Matric [(1,0),(0,1)]` find k so that `A^2 = kA - 2I`
If A = `[(3,1),(-1,2)]` show that `A^2 - 5A + 7I = 0`.
A `= [(1,1,2),(0,2,-3),(3,-3,4)] "and B"^-1 = [(1,2,0),(0,3,-1),(1,0,2)]`
The restriction on n, k and P so that PY + WY will be defined are
If X, Y, Z, Wand P are matrices of order 2 × n, 3 × k, 2 × P and P × K respectively. if n = P, then the order of the matrix 7x – 5z is
If A = `[(1, 0),(2, 1)]`, B = `[(x, 0),(1, 1)]` and A = B2, then x equals ______.
If A = `[(1, 2, 3),(3, -2, 1),(4, 2, 1)]`, then show that A3 – 23A – 40I = 0.