English

If A = [31-12] show that A2-5A+7I=0. - Mathematics

Advertisements
Advertisements

Question

If A = `[(3,1),(-1,2)]`  show that  `A^2 - 5A + 7I = 0`.

Sum

Solution

We have to proved that A2 -  5A + 7I = 0

`A^2 = [(3,1), (-1, 2)][(3,1), (-1,2)]`

`= [(9 - 1,3 + 2),(-3 -2,-1 + 4)] = [(8,5), (-5,3)]`

`5A = 5 = [(3,1), (-1,2)] = [(15,5), (-5, 10)]`

Now, substituting the values in A2 - 5A + 71, we have,

`A^2 - 5A + 7I = [(8,5), (-5, 3)] - [(15,5),(-5,10)] + [(7,0),(0,7)]`

= `[(-7,0), (0,-7)] + [(7,0), (0,7)]`

= `[(0,0), (0,0)] = 0`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Exercise 3.5 [Page 100]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 3 Matrices
Exercise 3.5 | Q 8 | Page 100

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×