Advertisements
Advertisements
Question
Following table shows the birth month of 40 students of class IX.
Jan | Feb | March | April | May | June | July | Aug | Sept | Oct | Nov | Dec |
3 | 4 | 2 | 2 | 5 | 1 | 2 | 5 | 3 | 4 | 4 | 4 |
Solution
The total number of trials is 40.
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted by P (A) and is given by
P(A) = `m/n`
Let A1 be the event that the birth month of a chosen student is august.
The number of times A1 happens is 5.
Therefore, we have
` P(A_1)=5/40`
=`1/8`
APPEARS IN
RELATED QUESTIONS
To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.
Opinion | Number of students |
like | 135 |
dislike | 65 |
Find the probability that a student chosen at random
(i) likes statistics, (ii) does not like it
Concentration of SO2 (in ppm) | Number of days (Frequency) |
0.00 − 0.04 | 4 |
0.04 − 0.08 | 9 |
0.08 − 0.12 | 9 |
0.12 − 0.16 | 2 |
0.16 − 0.20 | 4 |
0.20 − 0.24 | 2 |
Total | 30 |
The above frequency distribution table represents the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12 − 0.16 on any of these days.
A coin is tossed 1000 times with the following frequencies:
Head: 455, Tail: 545
Compute the probability for each event.
The percentage of marks obtained by a student in monthly unit tests are given below:
Unit test: | I | II | III | IV | V |
Percentage of marks obtained: | 69 | 71 | 73 | 68 | 76 |
Find the probability that the student gets:
(i) more than 70% marks
(ii) less than 70% marks
(iii) a distinction
Given below is the frequency distribution of wages (in Rs) of 30 workers in a certain factory:
Wages (in Rs) | 110-130 | 130-150 | 150-170 | 170-190 | 190-210 | 210-230 | 230-250 |
No. of workers | 3 | 4 | 5 | 6 | 5 | 4 | 3 |
A worker is selected at random. Find the probability that his wages are:
(i) less than Rs 150
(ii) at least Rs 210
(iii) more than or equal to 150 but less than Rs 210.
A big contains 4 white balls and some red balls. If the probability of drawing a white ball from the bag is `2/5`, find the number of red balls in the bag.
what is the probability of getting at least two heads?
A coin is tossed 1000 times, if the probability of getting a tail is 3/8, how many times head is obtained?
In a medical examination of students of a class, the following blood groups are recorded:
Blood group | A | AB | B | O |
Number of students | 10 | 13 | 12 | 5 |
A student is selected at random from the class. The probability that he/she has blood group B, is:
A company selected 4000 households at random and surveyed them to find out a relationship between income level and the number of television sets in a home. The information so obtained is listed in the following table:
Monthly income (in Rs) |
Number of Television/household | |||
0 | 1 | 2 | Above 2 | |
< 10000 | 20 | 80 | 10 | 0 |
10000 – 14999 | 10 | 240 | 60 | 0 |
15000 – 19999 | 0 | 380 | 120 | 30 |
20000 – 24999 | 0 | 520 | 370 | 80 |
25000 and above | 0 | 1100 | 760 | 220 |
Find the probability:
- of a household earning Rs 10000 – Rs 14999 per year and having exactly one television.
- of a household earning Rs 25000 and more per year and owning 2 televisions.
- of a household not having any television.