English

For the differential equation, find the general solution: dydx=1-cosx1+cosx - Mathematics

Advertisements
Advertisements

Question

For the differential equation, find the general solution:

`dy/dx = (1 - cos x)/(1+cos x)`

Sum

Solution

`dy/dx = (1 - cos x)/(1 + cos  x) = (1 - 1 + 2  sin^2 x/2)/(1 + 2  cos^2 x/2 - 1)`

`dy/dx = (sin^2   x/2)/(cos^2   x/2) = tan^2  x/2`

`dy = tan^2  x/2  dx`

On integrating

`int 1. dy = int tan^2  x/2  dx`

`int 1. dy = int (sec^2  x/2 - 1)  dx`

`y = 2  tan  x/2 - x + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.4 [Page 395]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.4 | Q 1 | Page 395

RELATED QUESTIONS

For the differential equation, find the general solution:

`dy/dx = sqrt(4-y^2)      (-2 < y < 2)`


For the differential equation, find the general solution:

`dy/dx + y = 1(y != 1)`


For the differential equation, find the general solution:

sec2 x tan y dx + sec2 y tan x dy = 0


For the differential equation, find the general solution:

(ex + e–x) dy – (ex – e–x) dx = 0


For the differential equation, find the general solution:

`dy/dx = sin^(-1) x`


For the differential equation, find the general solution:

ex tan y dx + (1 – ex) sec2 y dy = 0


Find the equation of a curve passing through the point (0, 0) and whose differential equation is y′ = e x sin x.


At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (- 4, -3). Find the equation of the curve given that it passes through (-2, 1).


The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.


In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (log­e 2 = 0.6931).


In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


Find the equation of the curve passing through the point `(0,pi/4)`, whose differential equation is sin x cos y dx + cos x sin y dy = 0.


Find the particular solution of the differential equation:

`y(1+logx) dx/dy - xlogx = 0`

when y = e2 and x = e


Find the particular solution of the differential equation ex tan y dx + (2 – ex) sec2 y dy = 0, give that `y = pi/4` when x = 0


Find the particular solution of the differential equation `dy/dx + 2y tan x = sin x` given that y = 0 when x =  `pi/3`


Verify y = log x + c is a solution of the differential equation

`x(d^2y)/dx^2 + dy/dx = 0`


Solve the differential equation:

`dy/dx = 1 +x+ y + xy`


Solve

`y log  y dy/dx + x  – log y = 0`


The resale value of a machine decreases over a 10 year period at a rate that depends on the age of the machine. When the machine is x years old, the rate at which its value is changing is ₹ 2200 (x − 10) per year. Express the value of the machine as a function of its age and initial value. If the machine was originally worth ₹1,20,000, how much will it be worth when it is 10 years old?


State whether the following statement is True or False:

A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation


Find the solution of `"dy"/"dx"` = 2y–x.


Find the differential equation of all non-vertical lines in a plane.


Solve the differential equation `(x^2 - 1) "dy"/"dx" + 2xy = 1/(x^2 - 1)`.


Solve the differential equation `"dy"/"dx" + 1` = ex + y.


Find the equation of the curve passing through the (0, –2) given that at any point (x, y) on the curve the product of the slope of its tangent and y-co-ordinate of the point is equal to the x-co-ordinate of the point.


Solve the following differential equation

x2y dx – (x3 + y3)dy = 0


The solution of the differential equation, `(dy)/(dx)` = (x – y)2, when y (1) = 1, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×