Advertisements
Advertisements
Question
Find the particular solution of the differential equation:
`y(1+logx) dx/dy - xlogx = 0`
when y = e2 and x = e
Solution
Given equation is
`y(1 + logx) dx/dy -xlogx = 0`
`:. y(1+logx) dx/dy = xlogx`
`:. y(1+logx)dx = xlogx dy`
Separating the variables
`1/ydy = (1+logx)/(xlogx) dx`
Integrating, we have
`int1/y dy = int (1+logx)/(xlogx) dx`
`:.log|y| = log|xlogx|+logc`
`:. log|y| = log|cxlogx|`
∴ y = cx log x is the general solution
Given x = e, y = e2
∴ e2 = c.e.log e
∴ `e^2 = c.e`
∴ c = e
∴y = ex.logx
APPEARS IN
RELATED QUESTIONS
For the differential equation, find the general solution:
`dy/dx + y = 1(y != 1)`
For the differential equation, find the general solution:
sec2 x tan y dx + sec2 y tan x dy = 0
For the differential equation, find the general solution:
`x^5 dy/dx = - y^5`
For the differential equation, find the general solution:
ex tan y dx + (1 – ex) sec2 y dy = 0
For the differential equation find a particular solution satisfying the given condition:
`cos (dx/dy) = a(a in R); y = 1` when x = 0
For the differential equation find a particular solution satisfying the given condition:
`dy/dx` = y tan x; y = 1 when x = 0
For the differential equation `xy(dy)/(dx) = (x + 2)(y + 2)` find the solution curve passing through the point (1, –1).
Find the equation of a curve passing through the point (0, -2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.
At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (- 4, -3). Find the equation of the curve given that it passes through (-2, 1).
In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (loge 2 = 0.6931).
In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?
The general solution of the differential equation `dy/dx = e^(x+y)` is ______.
Find the equation of the curve passing through the point `(0,pi/4)`, whose differential equation is sin x cos y dx + cos x sin y dy = 0.
Find the particular solution of the differential equation `dy/dx + 2y tan x = sin x` given that y = 0 when x = `pi/3`
Solve the equation for x:
sin-1x + sin-1(1 - x) = cos-1x, x ≠ 0
Solve the differential equation `"dy"/"dx" = 1 + "x"^2 + "y"^2 +"x"^2"y"^2`, given that y = 1 when x = 0.
Verify y = log x + c is a solution of the differential equation
`x(d^2y)/dx^2 + dy/dx = 0`
Solve `dy/dx = (x+y+1)/(x+y-1) when x = 2/3 and y = 1/3`
Solve
y dx – x dy = −log x dx
Solve
`y log y dy/dx + x – log y = 0`
The resale value of a machine decreases over a 10 year period at a rate that depends on the age of the machine. When the machine is x years old, the rate at which its value is changing is ₹ 2200 (x − 10) per year. Express the value of the machine as a function of its age and initial value. If the machine was originally worth ₹1,20,000, how much will it be worth when it is 10 years old?
State whether the following statement is True or False:
A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation
Solve the differential equation `(x^2 - 1) "dy"/"dx" + 2xy = 1/(x^2 - 1)`.
Solve the differential equation `"dy"/"dx" + 1` = ex + y.
Solve: (x + y)(dx – dy) = dx + dy. [Hint: Substitute x + y = z after seperating dx and dy]
Find the equation of the curve passing through the (0, –2) given that at any point (x, y) on the curve the product of the slope of its tangent and y-co-ordinate of the point is equal to the x-co-ordinate of the point.
The solution of the differential equation, `(dy)/(dx)` = (x – y)2, when y (1) = 1, is ______.