English

For the harmonic travelling wave y = 2 cos 2π (10t – 0.0080x + 3.5) where x and y are in cm and t is second. - Physics

Advertisements
Advertisements

Question

For the harmonic travelling wave y = 2 cos 2π (10t – 0.0080x + 3.5) where x and y are in cm and t is second. What is the phase difference between the oscillatory motion at two points separated by a distance of `(3λ)/4` (at a given instant of time)

Numerical

Solution

Given, wave functions are y = 2 cos 2π (10t – 0.0080x + 3.5) 

= 2 cos(20πt – 0.016πx + 7π)

Now, the standard equation of a travelling wave can be written as y = a cos(ωt – kx + `phi`)

On comparing with the above equation, we get

a = 2 cm

ω = 20π rad/s

k = 0.016π

Path difference = 4 cm

Δ`phi = (2π)/λ xx (3λ)/4 = (3π)/2` rad

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Waves - Exercises [Page 112]

APPEARS IN

NCERT Exemplar Physics [English] Class 11
Chapter 15 Waves
Exercises | Q 15.36 (d) | Page 112

RELATED QUESTIONS

Light waves each of amplitude "a" and frequency "ω", emanating from two coherent light sources superpose at a point. If the displacements due to these waves are given by y1 = a cos ωt and y2 = a cos(ωt + ϕ) where ϕ is the phase difference between the two, obtain the expression for the resultant intensity at the point.


As you have learnt in the text, the principle of linear superposition of wave displacement is basic to understanding intensity distributions in diffraction and interference patterns. What is the justification of this principle?


Two wave pulses identical in shape but inverted with respect to each other are produced at the two ends of a stretched string. At an instant when the pulses reach the middle, the string becomes completely straight. What happens to the energy of the two pulses?


A tuning fork of frequency 480 Hz is used to vibrate a sonometer wire having natural frequency 240 Hz. The wire will vibrate with a frequency of


A 4⋅0 kg block is suspended from the ceiling of an elevator through a string having a linear mass density of \[19 \cdot 2 \times  {10}^{- 3}   kg   m^{- 1}\]  . Find the speed (with respect to the string) with which a wave pulse can proceed on the string if the elevator accelerates up at the rate of 2⋅0 m s−2. Take g = 10 m s−2.


If `sqrt("A"^2+"B"^2)` represents the magnitude of resultant of two vectors `(vec"A" + vec"B")` and `(vec"A" - vec"B")`, then the angle between two vectors is ______.


Consider a ray of light incident from air onto a slab of glass (refractive index n) of width d, at an angle θ. The phase difference between the ray reflected by the top surface of the glass and the bottom surface is ______.


The displacement of an elastic wave is given by the function y = 3 sin ωt + 4 cos ωt. where y is in cm and t is in second. Calculate the resultant amplitude.


For the harmonic travelling wave y = 2 cos 2π (10t – 0.0080x + 3.5) where x and y are in cm and t is second. What is the phase difference between the oscillatory motion at two points separated by a distance of 0.5 m


For the harmonic travelling wave y = 2 cos 2π (10t – 0.0080x + 3.5) where x and y are in cm and t is second. What is the phase difference between the oscillatory motion at two points separated by a distance of `λ/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×