English

Form the Quadratic Equation If the Roots Are 3 and 8. - Algebra

Advertisements
Advertisements

Question

Form the quadratic equation if the roots are 3 and 8.

Sum

Solution

Let α= 3 and  β = 8

Sum of roots = α + β

= 3 + 8

= 11

Products of the roots = α x β

= 3 x 8

= 24

Quadratic equation is given by 

x2 - (α + β) x + αβ = 0

∴ x2 - 11x + 24 = 0 is the required quadratic equation.

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (July)

APPEARS IN

RELATED QUESTIONS

If the roots of 2x2 - 6x + k = 0 are real and equal, find k.


Solve : 7y = -3y2 - 4 


If the roots of x² + kx + k = 0 are real and equal, what is the value of k?


If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.


Form the quadratic equation if its roots are 5 and 7. 


Convert the following equations into simultaneous equations and solve:

`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`


Choose the correct alternative answer for the following sub-questions and write the correct alphabet.

Which of the following quadratic equation has roots – 3 and – 5?


Choose the correct alternative answer for the following sub questions and write the correct alphabet.

If one of the roots of quadratic equation X2 – kX + 27 = 0 is 3, then find the value of ‘k’


Write the roots of following quadratic equation.

(p – 5) (p + 3) = 0


To decide whether 1 is a root of quadratic equation x2 + 4x – 5 = 0 or not, complete the following activity.

Activity: When x = (______)
L.H.S. = 12 + 4(______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= R.H.S
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0


If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation


Roots of a quadratic equation are 5 and – 4, then form the quadratic equation


Solve the following quadratic equation.

`1/(4 - "p") - 1/(2 + "p") = 1/4`


Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.


Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.


If x = `sqrt(7) - 2`, find the value of `(x + 1/x)`.


One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.

Since, `square` is a root of equation x2 + 5x + a = 0

∴ Put x = `square` in the equation

⇒ `square^2 + 5 xx square + a` = 0

⇒ `square + square + a` = 0

⇒ `square + a` = 0

⇒ a = `square`


If 3 is one of the roots of the quadratic equation kx2 − 7x + 12 = 0, then k = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×