Advertisements
Advertisements
Question
If the roots of 2x2 - 6x + k = 0 are real and equal, find k.
Solution
The roots of the quadratic equation are real and equal.
∴ b² - 4ac = 0
(-6)² - 4 × 2 × k = 0
- 8k = -36
`k = 9/2`
APPEARS IN
RELATED QUESTIONS
Solve : 7y = -3y2 - 4
If the roots of x² + kx + k = 0 are real and equal, what is the value of k?
If α and β are the roots of the quadratice equation x²- 2x - 7= 0, find the
value α² + β²
If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find the values of (i) `α^2+β^2` (ii) `α^3+β^3`
Form the quadratic equation if the roots are 3 and 8.
If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.
Form the quadratic equation if its roots are 5 and 7.
Choose the correct alternative answer for the following sub-questions and write the correct alphabet.
Which of the following quadratic equation has roots – 3 and – 5?
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
If one of the roots of quadratic equation X2 – kX + 27 = 0 is 3, then find the value of ‘k’
If one of the roots of quadratic equation x2 + kx + 54 = 0 is – 6, then complete the following activity to find the value of ‘k’.
Activity: One of the roots of the quadratic equation x2 + kx + 54 = 0 is – 6.
Therefore let’s take x = ______
(– 6)2 + k(– 6) + 54 = 0
(______) – 6k + 54 = 0
– 6k + ______ = 0
k = ______
If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation
If the roots of the given quadratic equation are real and equal, then find the value of ‘k’
kx(x – 2) + 6 = 0
Solve the following quadratic equations by formula method.
5m2 – 4m – 2 = 0
One of the roots of equation kx2 – 10x + 3 = 0 is 3. Complete the following activity to find the value of k.
Activity:
One of the roots of equation kx2 – 10x + 3 = 0 is 3.
Putting x = `square` in the above equation
∴ `"k"(square)^2 - 10 xx square + 3` = 0
∴ `square` – 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`
The value of the discriminant of the equation x2 + 6x – 15 = 0 is ______.
Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.
Is (x – 5) a factor of the polynomial x3 – 5x – 30?
One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.
Since, `square` is a root of equation x2 + 5x + a = 0
∴ Put x = `square` in the equation
⇒ `square^2 + 5 xx square + a` = 0
⇒ `square + square + a` = 0
⇒ `square + a` = 0
⇒ a = `square`