Advertisements
Advertisements
Question
If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find the values of (i) `α^2+β^2` (ii) `α^3+β^3`
Solution
α and β are the roots of` x^2 - 4x - 6 = 0`
∴` a=1, b=-4,c=-6` α+
`α+β=c/a-6/1=-6`
`α+β=-b/a=(-(-4))/1=4/1=4`
`αβ=c/a=-6/1=-6`
`α^2+β^2=(α+β)^2-2αβ`
=`(4)^2-2(-6)`
=16+12
=28
` α^3+β^3 =(α+β)^3-3αβ(α+β)`
=(4)^3-3(-6)(4)
=64+72
=136
APPEARS IN
RELATED QUESTIONS
If the roots of 2x2 - 6x + k = 0 are real and equal, find k.
Form the quadratic equation if the roots are 3 and 8.
If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.
Form the quadratic equation if its roots are 5 and 7.
Convert the following equations into simultaneous equations and solve:
`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`
Choose the correct alternative answer for the following sub-questions and write the correct alphabet.
Which of the following quadratic equation has roots – 3 and – 5?
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
If one of the roots of quadratic equation X2 – kX + 27 = 0 is 3, then find the value of ‘k’
Write the roots of following quadratic equation.
(p – 5) (p + 3) = 0
To decide whether 1 is a root of quadratic equation x2 + 4x – 5 = 0 or not, complete the following activity.
Activity: When x = (______)
L.H.S. = 12 + 4(______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= R.H.S
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0
Roots of a quadratic equation are 5 and – 4, then form the quadratic equation
Solve the following quadratic equation.
`sqrt(3) x^2 + sqrt(2)x - 2sqrt(3)` = 0
Solve the following quadratic equations by formula method.
`y^2 + 1/3y` = 2
Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.
If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.
The value of the discriminant of the equation x2 + 6x – 15 = 0 is ______.
One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.
Since, `square` is a root of equation x2 + 5x + a = 0
∴ Put x = `square` in the equation
⇒ `square^2 + 5 xx square + a` = 0
⇒ `square + square + a` = 0
⇒ `square + a` = 0
⇒ a = `square`