Advertisements
Advertisements
Question
Solve the following quadratic equations by formula method.
`y^2 + 1/3y` = 2
Solution
`y^2 + 1/3y` = 2
∴ 3y2 + y = 6 ......[Multiplying both sides by 3]
∴ 3y2 + y – 6 = 0
Comparing the above equation with ay2 + by + c = 0, we get
a = 3, b = 1, c = – 6
∴ b2 – 4ac = (1)2 – 4 × 3 × (– 6)
= 1 + 72
= 73
y = `(-"b" +- sqrt("b"^2 - 4"ac"))/(2"a")`
= `(-1 +- sqrt(73))/(2(3))`
∴ y = `(-1 +- sqrt(73))/6`
∴ y = `(-1 + sqrt(73))/6` or y = `(-1 - sqrt(73))/6`
∴ The roots of the given quadratic equation are `(-1 + sqrt(73))/6` and y = `(-1 - sqrt(73))/6`.
RELATED QUESTIONS
If the roots of 2x2 - 6x + k = 0 are real and equal, find k.
If the roots of x² + kx + k = 0 are real and equal, what is the value of k?
If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.
Convert the following equations into simultaneous equations and solve:
`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
Degree of quadratic equation is always ______
If one of the roots of quadratic equation x2 + kx + 54 = 0 is – 6, then complete the following activity to find the value of ‘k’.
Activity: One of the roots of the quadratic equation x2 + kx + 54 = 0 is – 6.
Therefore let’s take x = ______
(– 6)2 + k(– 6) + 54 = 0
(______) – 6k + 54 = 0
– 6k + ______ = 0
k = ______
To decide whether 1 is a root of quadratic equation x2 + 4x – 5 = 0 or not, complete the following activity.
Activity: When x = (______)
L.H.S. = 12 + 4(______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= R.H.S
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0
Solve the following quadratic equations by formula method.
5m2 – 4m – 2 = 0
Form a quadratic equation if the roots of the quadratic equation are `2 + sqrt(7)` and `2 - sqrt(7)`
Sum of the roots of the quadratic equation is 5 and sum of their cubes is 35, then find the quadratic equation
Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.
One of the roots of equation kx2 – 10x + 3 = 0 is 3. Complete the following activity to find the value of k.
Activity:
One of the roots of equation kx2 – 10x + 3 = 0 is 3.
Putting x = `square` in the above equation
∴ `"k"(square)^2 - 10 xx square + 3` = 0
∴ `square` – 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`
Determine whether (x – 3) is a factor of polynomial x3 – 19x + 30.
Let P(x) = x3 – 19x + 30
By remainder theorem, `square` will be a factor of P(x), if P(3) = 0
Now, P(3) = `square` – 19 `square` + 30
= `square – square` + 30
= `square – square`
= 0
∵ P(3) = 0
Hence, `square` is a factor of polynomial x3 – 19x + 30.
If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.
The value of the discriminant of the equation x2 + 6x – 15 = 0 is ______.
Find the roots of the quadratic equation `x^2 - (sqrt(3) + 1)x + sqrt(3)` = 0.