Advertisements
Advertisements
Question
Form a quadratic equation if the roots of the quadratic equation are `2 + sqrt(7)` and `2 - sqrt(7)`
Solution
Let α = `2 + sqrt(7)` and β = `2 - sqrt(7)`
α + β = `2 + sqrt(7) + 2 - sqrt(7)` = 4
and α × β = `(2 + sqrt(7))(2 - sqrt(7))`
= `(2)^2 - (sqrt(7))^2` ......[(a + b)(a – b) = a2 – b2]
= 4 – 7
= – 3
∴ The required quadratic equation is
x2 – (α + β)x + αβ = 0
∴ x2 – 4x – 3 = 0
APPEARS IN
RELATED QUESTIONS
If the roots of 2x2 - 6x + k = 0 are real and equal, find k.
If α and β are the roots of the quadratice equation x²- 2x - 7= 0, find the
value α² + β²
If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.
Choose the correct alternative answer for the following sub-questions and write the correct alphabet.
Which of the following quadratic equation has roots – 3 and – 5?
Write the roots of following quadratic equation.
(p – 5) (p + 3) = 0
If one of the roots of quadratic equation x2 + kx + 54 = 0 is – 6, then complete the following activity to find the value of ‘k’.
Activity: One of the roots of the quadratic equation x2 + kx + 54 = 0 is – 6.
Therefore let’s take x = ______
(– 6)2 + k(– 6) + 54 = 0
(______) – 6k + 54 = 0
– 6k + ______ = 0
k = ______
To decide whether 1 is a root of quadratic equation x2 + 4x – 5 = 0 or not, complete the following activity.
Activity: When x = (______)
L.H.S. = 12 + 4(______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= R.H.S
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0
If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation
If the roots of the given quadratic equation are real and equal, then find the value of ‘k’
kx(x – 2) + 6 = 0
Solve the following quadratic equation.
`sqrt(3) x^2 + sqrt(2)x - 2sqrt(3)` = 0
Solve the following quadratic equations by formula method.
`y^2 + 1/3y` = 2
Solve the following quadratic equation.
`1/(4 - "p") - 1/(2 + "p") = 1/4`
Sum of the roots of the quadratic equation is 5 and sum of their cubes is 35, then find the quadratic equation
One of the roots of equation kx2 – 10x + 3 = 0 is 3. Complete the following activity to find the value of k.
Activity:
One of the roots of equation kx2 – 10x + 3 = 0 is 3.
Putting x = `square` in the above equation
∴ `"k"(square)^2 - 10 xx square + 3` = 0
∴ `square` – 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`
The value of the discriminant of the equation x2 + 6x – 15 = 0 is ______.
If x = `sqrt(7) - 2`, find the value of `(x + 1/x)`.
Is (x – 5) a factor of the polynomial x3 – 5x – 30?
One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.
Since, `square` is a root of equation x2 + 5x + a = 0
∴ Put x = `square` in the equation
⇒ `square^2 + 5 xx square + a` = 0
⇒ `square + square + a` = 0
⇒ `square + a` = 0
⇒ a = `square`