Advertisements
Advertisements
Question
Write the roots of following quadratic equation.
(p – 5) (p + 3) = 0
Solution
(p – 5) (p + 3) = 0
∴ p – 5 = 0 or p + 3 = 0
∴ p = 5 or p = – 3
∴ The roots of the given equation are 5 and – 3.
RELATED QUESTIONS
If the roots of 2x2 - 6x + k = 0 are real and equal, find k.
If the roots of x² + kx + k = 0 are real and equal, what is the value of k?
If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find the values of (i) `α^2+β^2` (ii) `α^3+β^3`
Form the quadratic equation if the roots are 3 and 8.
Choose the correct alternative answer for the following sub-questions and write the correct alphabet.
Which of the following quadratic equation has roots – 3 and – 5?
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
Degree of quadratic equation is always ______
Roots of a quadratic equation are 5 and – 4, then form the quadratic equation
Solve the following quadratic equation.
`sqrt(3) x^2 + sqrt(2)x - 2sqrt(3)` = 0
Solve the following quadratic equations by formula method.
5m2 – 4m – 2 = 0
Sum of the roots of the quadratic equation is 5 and sum of their cubes is 35, then find the quadratic equation
Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.
One of the roots of equation kx2 – 10x + 3 = 0 is 3. Complete the following activity to find the value of k.
Activity:
One of the roots of equation kx2 – 10x + 3 = 0 is 3.
Putting x = `square` in the above equation
∴ `"k"(square)^2 - 10 xx square + 3` = 0
∴ `square` – 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`
If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.
Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.
Is (x – 5) a factor of the polynomial x3 – 5x – 30?
One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.
Since, `square` is a root of equation x2 + 5x + a = 0
∴ Put x = `square` in the equation
⇒ `square^2 + 5 xx square + a` = 0
⇒ `square + square + a` = 0
⇒ `square + a` = 0
⇒ a = `square`
Find the roots of the quadratic equation `x^2 - (sqrt(3) + 1)x + sqrt(3)` = 0.