Advertisements
Advertisements
Question
From a group of 2 men (M1, M2) and three women (W1, W2, W3), two persons are selected. Describe the sample space of the experiment. If E is the event in which one man and one woman are selected, then which are the cases favourable to E?
Solution
Let S be the sample space of given event.
∴ S = { (M1, M2), (M1, W1), (M1, W2), (M1, W3), (M2, W1), (M2, W2), (M2, W3), (W1, W2) (W1, W3), (W2, W3)}
Let E be the event that one man and one woman are selected.
∴ E = {(M1, W1), (M1, W2), (M1, W3), (M2, W1), (M2, W2), (M2, W3)}
APPEARS IN
RELATED QUESTIONS
A problem is given to three students whose chances of solving it are `1/4, 1/5` and `1/3` respectively. Find the probability that the problem is solved.
An urn contains 25 balls of which 10 balls are red and the remaining green. A ball is drawn at random from the urn, the colour is noted and the ball is replaced. If 6 balls are drawn in this way, find the probability that:
(i) All the balls are red.
(ii) Not more than 2 balls are green.
(iii) The number of red balls and green balls is equal.
In a bag, there are three balls; one black, one red, and one green. Two balls are drawn one after another with replacement. State sample space and n(S).
Two dice are thrown. Write favourable outcomes for the following event.
R: Sum of the numbers on two dice is a prime number.
Also, check whether Events P and Q are mutually exclusive and exhaustive.
Two dice are thrown. Write favourable outcomes for the following event.
R: Sum of the numbers on two dice is a prime number.
Also, check whether Events Q and R are mutually exclusive and exhaustive.
A card is drawn at random from an ordinary pack of 52 playing cards. State the number of elements in the sample space if consideration of suits is not taken into account.
Consider an experiment of drawing two cards at random from a bag containing 4 cards marked 5, 6, 7, and 8. Find the sample Space if cards are drawn with replacement.
Consider an experiment of drawing two cards at random from a bag containing 4 cards marked 5, 6, 7, and 8. Find the sample Space if cards are drawn without replacement.
A bag contains 5 red marbles and 3 black marbles. Three marbles are drawn one by one without replacement. What is the probability that at least one of the three marbles drawn be black, if the first marble is red?
Bag I contains 3 black and 2 white balls, Bag II contains 2 black and 4 white balls. A bag and a ball is selected at random. Determine the probability of selecting a black ball.
A die is thrown three times. Let X be ‘the number of twos seen’. Find the expectation of X.
By examining the chest X ray, the probability that TB is detected when a person is actually suffering is 0.99. The probability of an healthy person diagnosed to have TB is 0.001. In a certain city, 1 in 1000 people suffers from TB. A person is selected at random and is diagnosed to have TB. What is the probability that he actually has TB?
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is ______.
A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number on the die and a spade card is ______.
A flashlight has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, the probability that both are dead is ______.
Two dice are thrown. If it is known that the sum of numbers on the dice was less than 6, the probability of getting a sum 3, is ______.
An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red is: